

Innovative Data Collection Using Big Data Analytics

May 19, 2021

© 2020 / VHB[®], Vanasse Hangen Brustlin, Inc.[®] and Vanasse Hangen BrustlinSM All Rights Reserved

Meeting With You Today

Amir Rizavi, PE, ENV SP Director of Transportation Systems

Steve Anderson, GISP Director of Applied Technology

Our Vision

A transportation planning tool that combines big data analytics and traditional traffic analysis to identify traffic data at intersections more efficiently than ever before, without the need for traditional manual or electronic counts.

How Are We Collecting Data?

"If "big data" products such as INRIX or Street Light are used, this should be discussed in advance with the appropriate local government and VDOT land development manager, or in the case of VDOT planning studies, with Traffic Engineering and Transportation Planning. Data should have been collected between to January 1 2017 and March 15 2020." – VDOT NoVA, Recommended Alternative Traffic Count Procedure

"Where no TMCs exist, Traffic Signal Warrants **may be** estimated using third-party sensor or probe data, estimates based upon ATRs, or combinations thereof, upon authorization from the State Traffic Engineer." – MassDOT, *Guidance on Traffic Count Data*

"Third-party vendor data, with origin-destination information prior to March 12, 2020, **can be used to estimate percentages** of turning movements." – PennDOT, *COVID-19 Traffic Data Guidance*

VHB's latest technology-driven innovation revolutionizes the way we account for traffic volumes at urban, suburban, or rural intersections during typical and atypical circumstances. Intersect leverages big data and traffic analysis to keep critical projects moving forward.

Traditional Methods

Probe Collection

Data Sources

	Source	Captured Data	Capture Rate
INRIX Wejo	INRIX	 Speed Historic average speed Travel time Volume data 	 Near real time (30 seconds – 1 minute)
Verizon Replica	Wejo	 Speed Historic average speed Travel time Volume data Queuing 	 Near real time (3 to 5 seconds)
Teralytics Airsage	HERE (previous NAVTEQ)	SpeedTravel timeJam factor (congestion)	 Near real time (30 seconds – 1 minute)
Moovit CityDash	Verizon	 Origin-Destination matrices Congestion analysis Parking optimization Volume data 	• Near real time (1 minute)
Streetlight	Replica	 Origin-Destination All mode estimates Trip Purpose 	Highest capture rateOvernight process

INRIX Technology Platform

Unique big data and analytics platform ingesting multiple data feeds

• Global geo-spatial platform for location based services • Massive real-time data aggregation and processing • Analytics capabilities on 10 years of historical data

Trip Analysis Using Big Data

Start trip Locations—Maintaining Anonymity

Table

🗉 • | 🔁 • | 🏪 🔂 🖾 🐙 🗙

psicsv														
Field1	Field2	Field3	Field4	Field5	Field6	Field7	Field8	Field9	Field10	Field11	Field12	Field13	Field14	Field1
ff3cba967599d6092ace1df580bd1b80	ff3cba967599d6092ace1df580bd1b80	42998cf32d552343bc8e460416382dca	1	2020-02-12T10:55:08.000Z	3	2020-02-12T11:20:03.000Z	3	28.46084	-81.42311	28.49102	-81.4643	I	1	
ff437755b400ec6268c0e27d7cfd8476	ff437755b400ec6268c0e27d7cfd8476	42998cf32d552343bc8e460416382dca	1	2020-02-12T17:41:05.000Z	3	2020-02-12T17:55:33.000Z	3	28.35092	-81.5879	28.38113	-81.54945	1	1	
ff481e899970f82e25d87bbbcb57697c	a7cbdac3b46286807c1f793f83f1ee5a	d07e70efcfab08731a97e7b91be644de	1	2020-02-12T19:01:28.000Z	3	2020-02-12T19:18:25.000Z	3	28.86091	-82.04246	28.87293	-81.90788	EI	1	
ff527cde41ab325d5f8afc07be57fad5	f927ac0e48d4e1af77a7809e1c7a9c7f	d07e70efcfab08731a97e7b91be644de	1	2020-02-12T22:30:23.000Z	3	2020-02-12T22:51:13.000Z	3	28.75983	-81.35719	28.85249	-81.34208	IE	1	
ff9636c4b1e8e10a2dc5e3232799d45b	ff9636c4b1e8e10a2dc5e3232799d45b	42998cf32d552343bc8e460416382dca	1	2020-02-12T19:58:42.000Z	3	2020-02-12T20:05:51.000Z	3	28.27717	-81.34757	28.2941	-81.36268	I	1	(
ff9ea8cea50107013c5345c46447d7bc	737b8475674271bfab142abdf7720abe	54229abfcfa5649e7003b83dd4755294	1	2020-02-12T16:03:57.000Z	3	2020-02-12T16:18:41.000Z	3	28.51998	-81.31187	28.57668	-81.31599	I	2	
ffe156be7150c534fcfd3872673b0b1d	ffe156be7150c534fcfd3872673b0b1d	42998cf32d552343bc8e460416382dca	1	2020-02-12T21:01:18.000Z	3	2020-02-12T21:22:15.000Z	3	28.55014	-81.5316	28.60441	-81.55082	I	1	
ffe210e51aab2f3f79e91bc9d0af19d5	ffe210e51aab2f3f79e91bc9d0af19d5	42998cf32d552343bc8e460416382dca	1	2020-02-12T23:26:25.000Z	3	2020-02-13T00:17:53.000Z	3	28.69359	-81.47666	28.56462	-81.36405	I	1	

• • 979147

trips.csv

Looking At a Trip For Turning Movement | Trip Start

□•|\$\$•|\$\$ 0 @ × |勁勁@ ×

rips_firstXY

OBJECTID *	Field1	Field2	Field3	Field4	Field5	Field6	Field7	Field8	Field9	Field10	Field11	Field12	Field13	Field /
14673	2 12dbae3be630e277475fa4cb4741cbe6	12dbae3be630e277475fa4cb4741cbe6	42998cf32d552343bc8e460416382dca	1	2020-02-12T00:01:19.000Z	2	2020-02-12T00:21:58.000Z	2	28.33279	-81.48902	28.25661	-81.48216		
21810	1 a78d259a796ea59a34fddc01148c8a44	a78d259a796ea59a34fddc01148c8a44	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T00:14:41.000Z	2	2020-02-12T01:04:34.000Z	2	28.33279	-81.48902	28.18037	-81.49864	1	
40669	7 2d0aac53dd7d4cbcee5cc070953ca1f0	a9c0c5c02ccad2c96574d93756b8aa7b	c3e878e27f52e2a57ace4d9a76fd9acf	1	1 2020-02-12T00:17:07.023Z	2	2020-02-12T00:22:59.053Z	2	28.33279	-81.48902	28.33279	-81.47941	1	
92549	0 0caf3e4352738a0d28da969ec8660688	0caf3e4352738a0d28da969ec8660688	42998cf32d552343bc8e460416382dca	1	2020-02-12T00:29:16.000Z	2	2020-02-12T00:40:25.000Z	2	28.33279	-81.48902	28.33037	-81.5316		
37579	4 d3d7f4dc9a3cc7e7406aeed78df4aeb3	9f237f3c1b3c66ec2108bed5cb5b857d	84d9ee44e457ddef7f2c4f25dc8fa865	1	1 2020-02-12T00:33:14.000Z	2	2020-02-12T00:54:40.000Z	2	28.33279	-81.48902	28.27354	-81.59339	I .	
50537	9 46a56cb867fe4f18520afbbe7392bec5	46a56cb867fe4f18520afbbe7392bec5	42998cf32d552343bc8e460416382dca	1	2020-02-12T00:54:36.000Z	2	2020-02-12T00:59:50.000Z	2	28.33279	-81.48902	28.33399	-81.52748	1	
30251	4 d99876bdb4081a11881541b5719fb67f	d99876bdb4081a11881541b5719fb67f	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T01:06:42.000Z	2	2020-02-12T01:23:20.000Z	2	28.33279	-81.48902	28.37388	-81.50276		
44063	9 015b9b18c3da181616db08fb000b0015	0e010116220d3b4888462d279b719314	e2c0be24560d78c5e599c2a9c9d0bbd2	1	2020-02-12T01:17:59.000Z	2	2020-02-12T01:35:23.000Z	2	28.33279	-81.48902	28.19369	-81.71699	E	
18752	6 6fd15ab153659dcc9f74ae663cc2e0b1	6fd15ab153659dcc9f74ae663cc2e0b1	42998cf32d552343bc8e460416382dca	0	2020-02-12T01:24:41.000Z	2	2020-02-12T01:46:34.000Z	2	28.33279	-81.48902	28.3352	-81.47941		
46902	0 c6ee338cee376eaa59e6c1657c757a25	c6ee338cee376eaa59e6c1657c757a25	42998cf32d552343bc8e460416382dca	1	2020-02-12T01:27:36.000Z	2	2020-02-12T01:30:57.000Z	2	28.33279	-81.48902	28.33037	-81.4904	1	
11146	0 dc6f77a2cc653bb4a8ec83d65c57a27a	ac12f1037e04a472ea5e1b1a961c7ee5	d07e70efcfab08731a97e7b91be644de	1	1 2020-02-12T01:29:50.000Z	2	2020-02-12T01:46:13.000Z	2	28.33279	-81.48902	28.2941	-81.47117		
53935	2 4062179511232910459e57e7ded84009	4062179511232910459e57e7ded84009	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T01:42:31.000Z	2	2020-02-12T02:57:20.000Z	2	28.33279	-81.48902	27.60141	-80.82298	E	1
5161	0 959617d0613a030ee9f8abdcd33be5d0	959617d0613a030ee9f8abdcd33be5d0	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T01:42:42.000Z	2	2020-02-12T01:52:44.000Z	2	28.33279	-81.48902	28.37146	-81.40525		
71340	1 bf4eadebf054d0dedd2ae54df540e4c7	3a1fef85ad90ffa1d9fb76cfb73ab388	d07e70efcfab08731a97e7b91be644de	1	1 2020-02-12T01:51:15.000Z	2	2020-02-12T01:55:16.000Z	2	28.33279	-81.48902	28.33279	-81.49452		
39892	7 93dd13529cc7719e2601129e324277db	fa6e7c7164e1e4c8ee04a999dcce44f6	d07e70efcfab08731a97e7b91be644de	1	1 2020-02-12T02:02:13.000Z	2	2020-02-12T02:08:58:000Z	2	28.33279	-81.48902	28.34125	-81.47392		
72421	3 fb722f372ac35912fb6cc934fcc6e707	fb7221372ac35912fb6cc934fcc6e707	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T02:03:06.000Z	2	2020-02-12T02:28:28.000Z	2	28.33279	-81.48902	28.34971	-81.61262	1	1
77016	5 5a9dd2cf24ed8fb515ad58939f204516	5a9dd2cf24ed8fb515ad58939f204516	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T02:16:50.000Z	2	2020-02-12T02:50:12.000Z	2	28.33279	-81.48902	28.27112	-81.3668	1	
90518	1 e4b77730014aa502c37f7b832e122b5c	e4b77730014aa502c37f7b832e122b5c	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T02:50:17.000Z	2	2020-02-12T02:57:57.000Z	2	28.33279	-81.48902	28.33641	-81.53297	1	
69262	2 7972221d314a05973ffe59993cae672c	7972221d314a05973ffe59993cae672c	42998cf32d552343bc8e460416382dca	1	1 2020-02-12T02:51:59.000Z	2	2020-02-12T02:58:00.000Z	2	28.33279	-81.48902	28.33641	-81.53297		
64721	6 39d74076213695f51ae5d9fcf0f87cc6	39d74076213695f51ae5d9fcf0f87cc6	42998cf32d552343bc8e460416382dca	1	2020-02-12T03:58:24.000Z	2	2020-02-12T04:00:36.000Z	2	28.33279	-81.48902	28.33279	-81.49177		
37205	3 1125ed42630d2cc0abc3781da728a1f9	1125ed42630d2cc0abc3781da728a1f9	42998cf32d552343bc8e460416382dca	1	2020-02-12T04:10:50.000Z	2	2020-02-12T04:28:05.000Z	2	28.33279	-81.48902	28.24088	-81.43684		
29938	8 39c61cb36edccb28cb3747d5a5ee0e1c	39c61cb36edccb28cb3747d5a5ee0e1c	42998cf32d552343bc8e460416382dca	1	2020-02-12T04:47:23.000Z	2	2020-02-12T04:53:17.000Z	2	28.33279	-81.48902	28.32916	-81.51649	1	
48327	0 b416f6536a9ee9c81024f56968cb896f	b416f6536a9ee9c81024f56968cb896f	42998cf32d552343bc8e460416382dca	1	2020-02-12T11:14:15:000Z	3	2020-02-12T11:23:08.000Z	3	28.33279	-81.48902	28.30498	-81.45744	1	

Intersection Probe Data | Speed Data

	er en en					1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -		1		4
1	FID	Shape	osm_id*	name	ref	type	oneway	bridge	maxspeed	ſ
ŝ	85517	Polyline	136135049	West Irlo Bronson Memorial Highwa	US 192	primary	1	0	45	
2		7				and the second se				М

I 4 0 ▶ ▶I | □ □ (1 out of 279562 Selected)

roads

14 4

NRIX TrajectorySample

Т	TrajRawDistanceM	TrajRawDurationMillis	Segmentid	Segmentidx	LengthM	CrossingStartOffsetM	CrossingEndOffsetM	CrossingStartDateUtc	CrossingEndDateUtc	CrossingSpeedKph	OnRoad
I	11638.06378	1402000	554574785_0	12	148.989	0	148.989	2020-02-12T21:25:44.073Z	2020-02-12T21:26:01.469Z	30.831494	
J	11638.06378	1402000	554574785_1	13	59.091	0	59.091	2020-02-12T21:26:01.469Z	2020-02-12T21:26:08.369Z	30.831494	
	11638.06378	1402000	159568848_0	14	53.492	0	53.492	2020-02-12T21:26:08.369Z	2020-02-12T21:26:14.615Z	30.831494	
	11638.06378	1402000	159568848_1	15	73.362	0	73.362	2020-02-12T21:26:14.615Z	2020-02-12T21:26:23.181Z	30.831494	
	11638.06378	1402000	159568828_0	16	21.156	0	21.156	2020-02-12T21:26:23.181Z	2020-02-12T21:26:25.651Z	30.831493	
	11638.06378	1402000	136135049_36	17	178.313	0	178.313	2020-02-12T21:26:25.651Z	2020-02-12T21:26:46.472Z	30.831494	
	11638.06378	1402000	136135049_37	18	135.106	0	135.106	2020-02-12T21:26:46.472Z	2020-02-12T21:27:02.247Z	30.831494	
1	11638.06378	1402000	136135049_38	19	10.119	0	10.119	2020-02-12T21:27:02.247Z	2020-02-12T21:27:03.429Z	30.831491	
٦	11638.06378	1402000	136135049_39	20	71.54	0	71.54	2020-02-12T21:27:03.429Z	2020-02-12T21:27:11.782Z	30.831493	
1	11638.06378	1402000	136135049_40	21	161.34	0	161.34	2020-02-12T21:27:11.782Z	2020-02-12T21:28:00.000Z	12.045774	
Т	11638.06378	1402000	136135049_41	22	50.152	0	50.152	2020-02-12T21:28:00.000Z	2020-02-12T21:28:03.061Z	58.987288	
Т	11638.06378	1402000	136135049_42	23	108.818	0	108.818	2020-02-12T21:28:03.061Z	2020-02-12T21:28:09.702Z	58.987287	
٦	11638.06378	1402000	136135049_43	24	65.306	0	65.306	2020-02-12T21:28:09.702Z	2020-02-12T21:28:13.688Z	58.987288	
1	11000 A0030	4 100000						0000 00 10T01.00.10 0007		FA 6639966	1

Intersection Probe Data | Bridge Crossings

Intersection Probe Data | Congestion Management

Starting Trip Locations—All Vehicles, 1 Day

Intersect Procedures

Intersect's Innovative Process

Intersect Leverages Probe Data in a Big Data Environment

- Identify turn % or volumes
- Continuous collection
 - Time of day
 - Day of week
- Seasonal adjustments (multiple days)

Percent Turns Using Probe Data

% Left Turns =
(4-6 pm)
$$\sum_{4-6pm} Point A \to B + \sum_{4-6pm} Point A \to C + \sum_{4-6pm} Point A \to D$$

Intersect Identifies Control Points

- Permanent/portable count stations
- Sensors
- Local or private counts
- Capture rates

Intersect's Balanced Flow Approach

- Ingested data counts
- Sample for multiple hours
- Derive percentages for approaches and turns
- Balanced inbound and outbound volumes

Deviation For Inbound Traffic:

Deviation_{A1} =
$$\frac{T_{A1}}{(V_{A+LT} + V_{A-TH} + V_{A-RT})}$$
Deviation_{A2} =
$$\frac{T_{A2}}{(V_{D-LT} + V_{C-TH} + V_{B-RT})}$$
Deviation_{B1} =
$$\frac{T_{B1}}{(V_{B+LT} + V_{B-TH} + V_{B-RT})}$$
Deviation_{B2} =
$$\frac{T_{B2}}{(V_{A+LT} + V_{D-TH} + V_{C-RT})}$$
Deviation_{C2} =
$$\frac{T_{C2}}{(V_{B+LT} + V_{A-TH} + V_{D-RT})}$$
Deviation_{C2} =
$$\frac{T_{C2}}{(V_{B+LT} + V_{A-TH} + V_{D-RT})}$$
Deviation_{D1} =
$$\frac{T_{D1}}{(V_{D-LT} + V_{D-TH} + V_{D-RT})}$$
Deviation_{D2} =
$$\frac{T_{D2}}{(V_{C-LT} + V_{B-TH} + V_{A-RT})}$$

Deviation For Outbound Traffic:

Intersect's Balanced Flow Approach

- Balance the in/out for each leg
- Converted to big data environment
- Program is 1.3 million (3-way) and 2.8 billion (4-way) permutations

2019 Summer Traffic Volumes developed via

WHERE DATA AND RESULTS CONVERGE

AM Peak Volumes

			19	0	19			
			7	0	7			
			SBRT	SBTH	SBLT			
46	7	EBLT				WBRT	4	10
671	644	EBTH				WBTH	728	789
54	9	EBRT	6			WBLT		
5			NBLT	NBTH	NBRT			
			5	0	3			
			41	0	11			

Intersection: Montauk Hwy & Barberry Rd/Wagstaff Ln Start Time: 11:30 26435.03 AM Peak

	Adjustme	nt Factor
A1 / C1 (NBRT / SBRT)	3.56	2.73
A2 / C2 (NBTH / SBTH)	10.00	7.00
A3 / C3 (NBLT / SBLT)	8.20	2.55
B1 / D1 (WBRT / EBRT)	2.50	6.00
B2 / D2 (WBTH / EBTH)	1.08	1.04
B3 / D3 (WBLT / EBLT)	3.44	6.50

Intersection: Montauk Hwy & Secatogue Ln Start Time: 11:30

Adjustment Factor	Ad	ljustment	t Factor
-------------------	----	-----------	----------

A1 / C1 (NBRT / SBRT)	1.27	0.00
A2 / C2 (NBTH / SBTH)	0.00	0.00
A3 / C3 (NBLT / SBLT)	1.27	0.00
B1 / D1 (WBRT / EBRT)	0.00	1.44
B2 / D2 (WBTH / EBTH)	1.06	1.06
B3 / D3 (WBLT / EBLT)	0.89	0.00

			SBRT	SBTH	SBLT			
		EBLT				WBRT		
643	607	EBTH				WBTH	675	716
58	40	EBRT	2			WBLT	29	26
			NBLT	NBTH	NBRT			
			47		34			
			60		43			

Intersect's Valuable Benefits

24/7 accessible data for any intersection

Year-round availability for data collection easy adjustments to account for holidays, summer months, etc.

Fewer steps yield more efficiency and faster results—a cost and time savings

A larger data set offers more reliability and accuracy

Customizable output

Virtual collection minimizes field work and **enhances safety**

Viable tool during typical and atypical traffic conditions

Case Studies

Vhb.

Case Study: University of Southern Maine - Small

- 2 Locations being studied
- Low volume of traffic
- USM is transitioning from commuter-campus to higher resident population
- Traffic analysis to accommodate a new 580-bed residence hall
- Illustrate project impacts to complete local permitting and submit MaineDOT application

Case Study: EMR and AMD Planning Study - Medium

- Corridor Study
- 13 locations being studied
- Traffic Analysis to develop representative existing conditions
- Allowed study to proceed without significant delays
- Integrated data validation and verification process leveraging existing counts for calibration
- Level of accuracy in capturing average travel behavior was greater when compared to traditional manual counts

Belmont Ridge Road (Route 659)

Speed [mph]

Belm ontRidge Road (Route 659)

	:	1	2	2	3	3	4	1
Tim e Period	NΒ	SB	WВ	ΕB	NΒ	SB	WВ	EB
7:30-7:45	34	33	31	32	30	33	29	27
7:45-8:00	34	33	27	31	32	33	29	29
8 :0 0 -8 :15	33	29	23	32	30	33	26	29
8 :15 -8 :30	34	27	29	32	30	30	28	28
16 :4 5 -17 :0 0	34	30	29	29	31	28	29	29
17 :0 0 -17 :15	33	30	31	31	29	28	30	29
17 :15 -17 :30	32	28	28	30	29	25	28	27
17 :30 -17 :4 5	35	27	29	29	29	25	28	25

Briarfield Lane (Route 3442)/Belm ontRidge Road (Route 659)

	:	1	2	2		3	4	1
Tim e Period	NΒ	SB	WВ	EB	ΝB	SB	WВ	ΕB
7:30-7:45	25	24	33	28	18	25	33	35
7:45-8:00	24	31	28	27	24	13	29	29
8 :0 0 -8 :15	26	27	31	29	22	14	32	32
8 :15 -8 :30	26	30	31	30	23	29	33	34
16 :4 5 -17 :0 0	22	28	27	25	27	23	30	30
17 :0 0 -17 :15	21	21	25	24	24	18	29	29
17 :15 -17 :30	21	24	23	23	22	16	28	29
17 :30 -17 :4 5	20	22	27	22	24	20	30	26

Travel Time

Direction	In tersec From	tions To	AM Peak	PM Peak
From A to B	1	13	17 m inutes 48 second	1 18 m inutes 1 seconds
	1	2	2 m inutes 15 seconds	2 m inutes 13 seconds
	2	3	1m inute 31 seconds	1m inute 31 seconds
	3	4	1m inute 36 seconds	1m inute 32 seconds
	4	5	1m inute 14 seconds	1m inute 13 seconds
	5	6	1m inute 36 seconds	1m inute 36 seconds
	6	7	1m inute 2 seconds	1m inute 0 seconds
	7	8	1m inute 21 <i>s</i> econds	1m inute 19 seconds
	8	9b	1m inute 41 seconds	1m inute 43 seconds
	9b	9a	0 m inutes 18 seconds	0 m inutes 18 seconds
	9a	14	0 m inutes 18 seconds	0 m inutes 19 seconds
	14	15	0 m inutes 46 seconds	0 m inutes 48 seconds
	15	10	0 m inutes 59 seconds	1m inute 16 seconds
	10	11	0 m inutes 58 seconds	1m inute 4 seconds
	11	12	0 m inutes 34 seconds	0 m inutes 33 seconds
	12	13	1m inute 40 seconds	1m inute 35 seconds

Case Study: NCDOT – Large Scale

- VHB is managing NCDOT's statewide traffic count program
- Built a system that processes all requests, performs automated QC, and removed redundancy
- Project was paused because of pandemic
- Leverage probe data to generating data to understand seasonal traffic factors for 100 counties (PADT)
- Data used to calculate Volume to Capacity (V/C) ratios for identifying project prioritizations
- Developing a model, including data from continuous count stations for up to 55,000 locations in NC

Weekly Probe AWD vs Weekly ATR AWD

US 17 at Ocean Highway

Feedback & Questions